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Simulating turbulent Dean flow in Cartesian coordinates
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SUMMARY

A simplified approach to simulate turbulent flows in curved channels is proposed. A set of governing
equations of motion in Cartesian coordinates is derived from the full Navier–Stokes equations in cylindrical
coordinates. Terms to first order in the dimensionless curvature parameter are retained, whereas higher-
order terms are neglected. The curvature terms are implemented in a conventional Navier–Stokes code
using Cartesian coordinates. Direct numerical simulations (DNS) of turbulent flow in weakly curved
channels are performed. The pronounced asymmetries in the mean flow and the turbulence statistics
observed in earlier DNS studies are faithfully reproduced by the present simplified Navier–Stokes model.
It is particularly rewarding that also distinct pairs of counter-rotating streamwise-oriented vortices are
embedded in the simulated flow field. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Turbulent flows along convex or concave surfaces are frequently occurring in a variety of industrial
applications. The presence of a centrifugal force due to the inevitable streamline curvature affects
not only the mean flow but also the individual components of the Reynolds stress tensor. Typical
prototypes of wall-bounded flows with streamline curvature are Görtler flow along a concave
surface, Taylor–Couette flow between independently rotating cylinders, and Dean flow in a curved
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channel. A common feature of these flows is that a centrifugal instability may give rise to counter-
rotating pairs of streamwise-oriented vortices known as Görtler vortices, Taylor vortices, and Dean
vortices, respectively. Such vortices were first observed in the laminar flow regime, but the existence
of their turbulent analogue has later been confirmed. The presence of such longitudinal vortices
or roll cells gives rise to excessive cross-stream mixing and certainly affects the skin-friction drag
and the heat transfer rate.

The present study is concerned with Dean flow [1], i.e. the pressure-driven flow in a curved
channel bounded by two cylindrical surfaces. This flow is probably of greater engineering impor-
tance than the far more popular Taylor–Couette flow. The instability and the transition in Dean flow
were investigated theoretically and numerically by Finlay et al. [2] and experimentally by Matsson
and Alfredsson [3]. Direct numerical simulations (DNS) of turbulent curved-channel flow were
first performed by Moser and Moin [4] for a weakly curved channel. They observed asymmetries
in the resulting turbulence statistics and a distinct pair of counter-rotating roll cells. Such large-
scale longitudinal vortices were thereafter observed experimentally by Kobayashi and Maekawa [5]
using hot-wire anemometry. More recently, Nagata and Kasagi [6] performed curved-channel DNS
for four different curvature ratios, whereas Xu et al. [7] actively controlled the Dean vortices that
arose in their DNS and thereby reduced the skin friction.

In order to perform direct (or large-eddy) simulations of the turbulent flow field along a curved
surface the (filtered) Navier–Stokes equations can be expressed in curvilinear or body-fitted coor-
dinates. Taylor–Couette flow and Dean flows are more conveniently studied by using cylindrical
coordinates. However, the majority of well-documented DNS and large-eddy simulation (LES)
codes are available only in Cartesian coordinates. Although DNS and LES solvers in which the
Navier–Stokes equations are formulated in other coordinate systems, e.g. cylindrical, spherical,
and even generalized coordinates, are being used today, the post-processing of data required for
structural analysis is considerably simpler in Cartesian coordinates than in any other coordinate
system. The aim of the present study is therefore to derive the primary curvature corrections to
the Navier–Stokes equations, which are believed to account for modest streamline curvature. First-
order curvature corrections to the Navier–Stokes equations in Cartesian coordinates are rigorously
derived from the full Navier–Stokes equations in cylindrical coordinates in Section 3, after first
having defined the curved-channel flow problem in Section 2. The numerical approach and the
computational parameters are presented in Section 4, before the results of the present approach
are compared with DNS data from [4, 6] in Section 5.

2. DEAN FLOW IN CURVED-CHANNEL CONFIGURATION

We consider the pressure-driven incompressible flow of a viscous fluid in a curved channel as
illustrated in Figure 1. The flow is confined between two concentric cylinders with radii of curvature
Rin and Rout, respectively. The radius of curvature at the centerline is thus Rc= 1

2 (Rout+Rin) and
the channel half-width �= 1

2 (Rout−Rin). The ratio �/Rc is defined as the dimensionless curvature
parameter. In the limiting case of infinitely large radius of curvature, �/Rc goes to zero and the
plane channel flow limit is obtained.

The imposed mean pressure gradient Cp ≡−�P/��>0 drives the flow in the azimuthal (�)

direction of the cylindrical coordinate system shown in Figure 1. Irrespective of whether the flow
is laminar or turbulent, a mean pressure gradient �P/�r is set up in the radial (r) direction in order
to balance the centrifugal force due to the streamline curvature. The mean pressure is therefore
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SIMULATING TURBULENT DEAN FLOW 265

Figure 1. Curved-channel configuration and the cylindrical (r,�, z) and Cartesian (y, x, z) coordinate
systems. Rc= 1

2 (Rout+Rin) is the mean radius of curvature.

consistently higher along the outer surface than along the inner wall. This gives rise to the notion
of pressure and suction sides for the concave and convex surfaces, respectively. Provided that the
flow considered is statistically homogeneous in time and in the streamwise �-direction, a global
torque balance gives

�inR
2
in+�outR

2
out=Cp(R

2
out−R2

in)/2≡ 2�u2�R
2
c (1)

Here �in and �out denote the magnitude of the mean shear stresses along the inner and outer
surfaces, respectively. Equation (1) states that the torque about the center of curvature (r =0) exerted
by the imposed azimuthal pressure gradient is balanced by the torques associated with the skin
friction along the curved walls. The corresponding balance equation (2.2) in [4] is unfortunately
dimensionally inconsistent.

Owing to the asymmetry of the pressure-driven flow in a curved channel, the wall shear stresses
�in and �out are generally different and the global friction velocity u� defined by Equation (1)
becomes a representative measure of the overall flow resistance. The present definition of the
global friction velocity is consistent with that used in [6]. Local friction velocities are, however,
defined in accordance with the corresponding shear stresses u2�i≡�in/� and u2�o≡�out/�.

3. MATHEMATICAL FORMULATION

The full Navier–Stokes equations for an incompressible fluid are first written in cylindrical coordi-
nates (r,�, z) in the radial, azimuthal, and axial directions. The corresponding velocity components
(ur ,u�,uz) are governed by the respective momentum equations:
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where � and � are the density and the kinematic viscosity of the fluid. Mass conservation, i.e.
continuity, is given by

−→∇ ·−→u =−ur
r

(3)

Here, the two differential operators
−→∇ and ∇2 are defined as

−→∇ =er
�
�r

+e�
1

r

�
��

+ez
�
�z

(4a)

∇2= �2

�r2
+ 1

r2
�2

��2
+ �2

�z2
(4b)

The momentum and continuity equations have purposely been arranged such that the left-hand
sides correspond to the Navier–Stokes equations in a Cartesian coordinate system (y, x, z), provided
that y and x are taken as r and �r , respectively. With this identification, the operators

−→∇ and ∇2

become the standard gradient and Laplace operators in Cartesian coordinates.
The mathematical model given above is convenient to represent a flow that mainly is confined

to (�, z) surfaces, i.e. curved surfaces with radius of curvature r . In the curved-channel flow of
particular concern herein, we assume that the radius of curvature is much larger than the wall
separation 2� (see Figure 1). This assumption implies that the radial coordinate r is approximately
constant within the channel.

In order to simplify the system of governing equations, we first recast the problem into dimen-
sionless form by introducing the representative scales u�, �, �/u�, and �u2� for velocity, length,
time, and pressure. To simplify the notation, the symbols for the dimensionless variables are the
same as for the dimensional ones:

�ur
�t

+(−→u ·−→∇ )ur − 1

Re
∇2ur + �p

�r
= �

Rc

u2�
r

+ 1

Re

�

Rc

(
�ur
�r

− 2

r

�u�

��

)
− 1

Re

(
�

Rc

)2

ur

�u�

�t
+(−→u ·−→∇ )u�− 1

Re
∇2u�+ 1

r

�p
��

= − �

Rc

uru�

r
+ 1

Re

�

Rc

(
�u�

�r
+ 2

r

�ur
��

)

− 1

Re

(
�

Rc

)2

u�

�uz
�t

+(−→u ·−→∇ )uz− 1

Re
∇2uz+ �p

�z
= 1

Re

�

Rc

�uz
�r

(5)

Mass conservation correspondingly becomes

−→∇ ·−→u =− �

Rc
ur (6)

Here, Re is the Reynolds number based on the scaling velocity and length u� and �, i.e.
Re=u��/�. Of particular relevance in the present study is the length scale ratio �/Rc, i.e. the ratio
between the channel half-width � and the radius of curvature Rc. This dimensionless parameter
distinguishes betweenmild curvature (�/Rc≈0.01) and strong curvature (�/Rc�0.01). It is readily
seen that all terms on the right-hand sides of Equations (5)–(6) vanish in the limit of vanishing
curvature �/Rc→0, i.e. when the radius of curvature Rc becomes infinitely large.
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Let us assume that the curvature parameter �/Rc is small so that the terms of order (�/Rc)
2

can be neglected and only first-order curvature terms are retained. If the cylindrical coordinates
(r,�, z) are recast into Cartesian coordinates (y, x, z) by means of the identifications y=r , x=�r ,
and �/�x= R−1

c �/��, we arrive at the following system:
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−→∇ ·−→u =− �
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v (8)

Here, the velocity vector −→u =(v,u,w) is now referred to the Cartesian coordinates (y, x, z)
where y is in the wall-normal direction, x is in the streamwise direction, and z is still in the
spanwise direction (see Figure 1). It should be pointed out that both the cylindrical coordinate
system (r,�, z) and the Cartesian coordinate system (y, x, z) are right-hand systems.

The above set of equations constitutes an approximate Navier–Stokes system for weakly curved-
channel flow. Terms to second order in the curvature parameter �/Rc have been neglected both in
the streamwise and wall-normal momentum equations, whereas the only approximation invoked in
the spanwise momentum equation and the continuity equation is that the local radius of curvature
r is replaced by the mean radius of curvature Rc. This narrow-gap approximation to the full
Navier–Stokes equations is assumed to be reliable provided that �/Rc�1.

4. NUMERICAL APPROACH

The first-order curvature terms on the right-hand sides of Equations (7)–(8) are believed to account
for the primary effects of streamline curvature, whereas the neglected higher-order terms are
supposed to be of minor importance unless strongly curved flows are considered. In order to verify
this assumption, these terms were implemented in the well-documented DNS solver MGLET [8].

MGLET is a finite-volume code in which the Navier–Stokes equations are discretized on a
staggered Cartesian mesh with non-equidistant grid spacing. The discretization is second-order
accurate in space. For the time integration an explicit third-order Runge–Kutta scheme is used.
The Poisson equation for the pressure is solved by Stone’s Strongly Implicit Procedure.

Since we are concerned only with fully developed flow in a curved channel, the boundary condi-
tions are the same as those routinely used in DNS of plane Poiseuille flow. Periodic conditions are
therefore used in the homogeneous streamwise (x) and spanwise (z) directions. No-slip conditions
are imposed at the solid inner and outer surfaces.

Numerical simulations were performed for two slightly different cases, with the curvature
parameter �/Rc=0.0127 (Case 1) and �/Rc=0.013 (Case 2). This weakly curved-channel flow
corresponds to the case considered by Moser and Moin [4] at Re=168 and more recently by Nagata
and Kasagi [6] at Re=150. The modest difference in Reynolds number between the two reference
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Table I. Computational parameters for the present Cases 1 and 2 compared
with the corresponding reference cases.

Simulation Re Lc/� B/� �x+ �z+ �y+
min �y+

max

Moser and Moin 168 12.64 4�/3 18 6 0.2 8.2
Xu et al. 170 4� 8�/3 36 12 — —
Nagata and Kasagi 150 2.5� � 18.3 7.35 0.16 6.07
Present Case 1 168 12.64 4�/3 16.6 5.5 0.34 6.6
Present Case 2 150 2.5� � 18.3 7.35 0.3 5.92

The length Lc of the computational domain and the streamwise grid spacing �x= Rc�� are measured along
the centerline in the earlier studies in which a curved domain was used.

cases is probably of minor importance than the different sizes of the computational domain used.
For that reason we performed a simulation (Case 1) at Re=168 with a computational domain of
the same length (L) and width (B) as that used in [4], whereas the present Case 2 at Re=150
was performed with the same domain as in [6]; see Table I. In addition, some results from Case 2
with moderate curvature �/Rc=0.05 rather than weak curvature �/Rc=0.013 will be shown.

The present simulations were carried out with 128×128×128 (Case 1) and 128×64×64
(Case 2) grid points in the wall-normal, streamwise, and spanwise directions, respectively. The
grid points were equally distributed in the two homogeneous directions with constant grid spacing
�x+ and �z+ (measured in wall units) in the streamwise and spanwise directions, respectively.
A non-uniform mesh distribution was used in the wall-normal y-direction to adequately resolve
the turbulence scales in the vicinity of the walls. The first grid point away from the wall was at
�y+ ≈0.3, whereas �y+ ≈6 in the center (for details, see Table I).

The simulations were started from an instantaneous flow field from a fully developed plane
channel flow simulation and thereafter let to evolve to a new statistically steady state. The same
time step �t=0.0005�/u� as that used in [4] was used in both cases. Statistics were gathered for
6�/u� after the flow field first had evolved into a statistically steady state.

5. RESULTS AND COMPARISONS

All results reported in this section are for weakly curved-channel flow with �/Rc≈0.013 and
moderately curved-channel flow with �/Rc≈0.05. The present simplified Navier–Stokes model is
believed to be accurate for the modest curvature. Nagata and Kasagi [6] also reported results for
some higher curvature ratios up to �/Rc=0.20.

5.1. Mean flow and turbulence statistics

The mean flow and turbulence statistics presented in this section are subjected to averaging in
both the streamwise and spanwise directions. In Figure 2 the mean velocity for Case 1 is plotted
in law-of-the-wall coordinates, where U+ and y+ are based on the local wall-friction velocities
u�i and u�o introduced in the last paragraph of Section 2. With this scaling, the two mean velocity
profiles are nearly indistinguishable in the innermost wall layer up to about y+ ≈8. Further away
from the walls, the mean velocity in the inner (convex) part of the curved channel exceeds U+ in
the outer (concave) part.
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Figure 2. Mean velocity profile in local wall coordinates for Case 1.
——, concave wall; - - - -, convex wall.
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Figure 3. Shear stress variations across the curved channel for Case 1. - - - -, viscous
shear stress; ——, ◦, turbulent shear stress; · · · · · ·, 
, total shear stress �. Normalized

by �u2� . The symbols denote data from [4].

The variation of the total mean shear stress

�=�r
d

dr

(
U

r

)
−�uv (9)

across the curved channel is shown in Figure 3, together with its two constituents. The viscous
shear stress dominates in the innermost wall regions, whereas the turbulent shear stress exceeds the
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viscous shear over 90% of the cross-section and exhibits a nearly linear variation over the middle
of the channel. In a plane channel the shear stress distributions are perfectly anti-symmetric. In
the present curved-channel flow, the zero-crossing is shifted toward the inner (convex) wall and
the magnitude �out of the wall shear stress at the outer (concave) surface is substantially higher
than the wall friction �in at the inner surface. These asymmetries are fully consistent with the
observations reported in [4]. Local Reynolds numbers Rei and Reo based on the local friction
velocities u2�i≡�in/� and u2�o≡�out/� are provided in Table II. A nearly perfect agreement with
the data reported in [4] can be observed, while some deviations with data deduced from [6] exist.
It might be useful to compare the global Reynolds number with the local Reynolds numbers at the
inner and outer surfaces. The definition of the global friction velocity (1) can easily be rearranged to

Re2i

(
1− �

Rc

)2

+Re2o

(
1− �

Rc

)2

=2Re2 (10)

The global Reynolds number Re deduced from Equation (10) has also been reported in Table II.
The close correspondence between Re obtained from Equation (10) and Re associated with the
imposed azimuthal pressure gradient Cp suggests that the sampling is sufficient.

The turbulent intensities (root-mean-square of the velocity fluctuations) are shown in Figure 4
for both cases. Case 1 results compare favorably with the curved-channel data in [4] for Reynolds

Table II. Results for the present Cases 1 and 2 compared with
the corresponding reference cases.

Simulations Re Rei Reo Re from (10)

Moser and Moin 168 155 180 168.30
Nagata and Kasagi 150 128 160 145.31
Xu et al. 170 153 182 168.51
Present Case 1 168 150.41 180.52 166.54
Present Case 2 150 135.22 163.97 150.67
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Figure 4. Turbulent intensities scaled with the global friction velocity u�. ——, streamwise direction;
· · · · · ·, wall-normal direction; - - - -, spanwise direction. (a) Case 1 compared with data from [4].

(b) Case 2 compared with data from [6].
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Figure 5. Skewness of the three different velocity components for Case 1. ——, streamwise direction;
· · · · · ·, wall-normal direction; - - - -, spanwise direction. The symbols denote data from [4].

number Re=168 in Figure 4(a), as do the Case 2 results with DNS data of [6] for Re=150
in Figure 4(b). The results from both cases consistently show higher turbulence levels near the
concave wall than those seen near the inner wall. These distinct asymmetries are caused by extra
production terms in the transport equations for the individual Reynolds stress components, as
discussed by Nagata and Kasagi [6].

Skewness factors of the velocity fluctuations are presented in Figure 5 for Case 1. The skewness
of the spanwise velocity component S(w) is practically zero and this supports the adequacy of
the sampling time. S(u) exhibits the same asymmetric behavior as already observed in [4] with
the most noticeable feature being the substantially higher wall value at the convex side than at the
concave wall. Also S(v) shows the same qualitative behavior as the Moser and Moin [4] data in
the inner part of channel cross-section. However, the present S(v) reaches a maximum value at
the convex wall, whereas the data in [4] exhibit a local peak at about 15 wall units away from the
outer surface.

5.2. Results with moderately strong curvature �/Rc=0.05

Moser and Moin [4] simulated only the weakly curved channel corresponding to the present
Case 1, whereas Nagata and Kasagi [6] in their more recent investigation considered a range of
curvature ratios from 0.013 (the present Case 2) to 0.20. With the view to examine how well
the ‘narrow-gap’ approximation reproduces the curvature effects in a moderately curved channel,
Case 2 was reconsidered with the curvature parameter �/Rc=0.05. The mean velocity profile
and the turbulence intensities presented in Figure 6 compare surprisingly well with the DNS data
of Nagata and Kasagi [6], especially near the outer (concave) wall. The turbulence has been
substantially damped along the inner (convex) wall and correspondingly enhanced near the outer
surface due to the streamline curvature. The asymmetries are by far more distinct than for Case 1
with mild curvature (see Figure 4(b)).

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:263–274
DOI: 10.1002/fld



272 G. K. EL KHOURY, H. I. ANDERSSON AND B. PETTERSEN

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 6. Case 2 but with �/Rc=0.05. (a) Mean velocity profile scaled with the maximum mean velocity.
(b) Turbulent intensities scaled with the global friction velocity u�: ——, streamwise direction; · · · · · ·,

wall-normal direction; - - - -, spanwise direction. The symbols denote data from [6].

It should be recalled that only terms of the order (�/Rc)
2 were neglected in the ‘narrow-gap’

approximation, which led to the present set of simplified governing equations (7)–(8), whereas
terms of the order �/Rc were retained. Accordingly, DNS using the ‘narrow-gap’ approximation
should be expected to provide realistic results if �/Rc is of the order 0.01, while the predictions
can be expected to gradually deteriorate when �/Rc becomes of the order 0.1.

5.3. Dean vortices

Owing to a centrifugal instability mechanism, flows exhibiting curved streamlines may develop
secondary motions perpendicular to the primary flow. Pairs of counter-rotating vortices are a
commonly observed feature both in Taylor–Couette flow and boundary layer flow along a concave
surface. Such roll cells may also develop in curved-channel flow (Dean flow) and are accord-
ingly known as Dean vortices; see e.g. [2, 3]. The Dean vortices arise from the same instability
mechanism as the secondary roll cells developing in other flows with streamline curvature. For
this reason roll cells in curved-channel flow are sometimes called Taylor–Görtler vortices, e.g.
[4, 5, 7].

In order to see whether or not Dean vortices are embedded in the present flow field, the
instantaneous velocity field was averaged only in the streamwise direction x and in time t . The
averaged field then becomes a function of the cross-sectional coordinates y and z and thus contains
information about the Dean vortices, if any. By subtracting the conventionally averaged flow
field (averaged in x , z, and t), we are left with the secondary flow field. The streamlines of this
secondary flow are shown in Figure 7(a) for Case 1 and in Figure 7(b) for Case 2. In both cases
one pair of counter-rotating roll cells can be observed, i.e. a roll-cell pair fills the width of the
computational domain. Moser and Moin [4] pointed out that the periodic boundary conditions used
in the spanwise direction have the effect of restricting the possible wavelengths of the Dean vortices.
The wavelength in the present Case 1 is the same as that found by Moser and Moin [4], whereas
the wavelength in the present Case 2 is slightly smaller. This is more likely due to the narrower
computational domain than to the somewhat lower Reynolds number. Nagata and Kasagi [6] did
not report on Dean cells from their simulations, whereas Kobayashi and Maekawa [5] observed
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Figure 7. Dean vortices in weakly curved-channel flow: (a) Case 1 Re=168 and (b) Case 2 Re=150.

distinct vortex pairs in their laboratory experiments. Xu et al. [7] recently proposed an active
controlling scheme and succeeded to attenuate the Dean vortices in their DNS study.

6. CONCLUDING REMARKS

A set of momentum equations valid for flows with weak streamline curvature has been derived
from the full Navier–Stokes equations in cylindrical coordinates. Terms to first order in the curva-
ture parameter �/Rc were derived and implemented in a Navier–Stokes solver using Cartesian
coordinates. Results from DNS achieved by integrating the simplified Navier–Stokes model for
�/Rc≈0.013 were compared with DNS data [4, 6] acquired by integration of the full equations.
The curvature-induced alterations of the mean velocity profile and the asymmetries in the Reynolds
stress profiles are excellently reproduced by the present narrow-gap approach. Even for �/Rc=0.05
reasonably good correspondence with earlier DNS data [6] was observed. The underlying mecha-
nism responsible for the development of counter-rotating longitudinal Dean vortices is retained in
the simplified model.

The simplified Navier–Stokes equations derived in the present paper are believed to perform
equally well for other flows with moderate streamline curvature. Mildly curved turbulent boundary
layers (Görtler flow) and narrow-gap turbulent Taylor–Couette flow can thus be simulated with
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DNS or LES codes in Cartesian coordinates provided that the first-order curvature correction terms
are implemented in the flow solver.
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